6502 Dead Cycles ¹		Internal	External Operation	External Operation
Opcode/Addressing Mode	Cycle ^{2,3}	Operation ⁴	6502 ¹⁵	65C02 ¹⁵
1. zpg,X/Y	3	BAL + X	PFA ⁶	PBA ⁷
 abs,X/Y - read w/ pg. crossing 	4*	BAH + 1	PFA	PBA
^{3.} abs,X/Y - write w/o pg. crossing ⁸	4	BAH + 0	FFA ^{5,8}	FFA ^{5,8}
 abs,X/Y - write w/ pg. crossing 	4	BAH + 1	PFA	PBA
5. (zpg),Y - read w/ pg. crossing	5*	BAH + 1	PFA	PBA
 (zpg),Y - write w/o pg.crossing 	5	BAH + 0	FFA	PBA
 (zpg),Y - write w/ pg.crossing 	5	BAH + 1	PFA	PBA
8. (zpg,X)	3	BAL + X	PFA	PBA
9. RMW zpg,X - "Read, Modify, Write" Opcodes ¹¹	3	BAL + X	PFA	PBA
10. RMW abs,X - 6502 w/o pg. crossing	4	BAH + 0	FFA	
11. RMW abs,X - 6502 w/ pg. crossing	4	BAH + 1	PFA	
12. RMW abs,X - 65C02 INC/DEC w/o pg. crossing	4	BAH + 0		FFA
13. RMW abs,X – 65C02 INC/DEC w/ pg. crossing	4	BAH + 1		PBA
^{14.} RMW abs,X $-$ 65C02 ASL LSR ROL ROR w/ pg. $\mbox{crossing}^{12}$	4*	BAH + 1		PBA
15. RMW zpg	4	Modify	FFA (W) ⁹	FFA
16. RMW abs	5	Modify	FFA (W)	FFA
17. RMW zpg,X	5	Modify	FFA (W)	FFA
18. RMW abs,X	6 ¹²	Modify	FFA (W)	FFA
19. All 1 Byte Opcodes	2	_	PC ¹⁰	PC ¹⁰
20. JMP (abs)/(abs,X) - 65C02	4	_		PBA
21. JSR	3	_	SP	SP
22. RTS, RTI, PLP, PLA, PLY, PLX	3	SP + 1	SP	SP
23. RTS	6	PC + 1	PC ¹⁰	PC ¹⁰
^{24.} Branch (taken) ¹⁴	3	PCL + BOF ¹³	PC ¹⁰	PC ¹⁰
^{25.} Branch (taken) – w/ pg. crossing ¹⁴	4*	PCH +/- 1	PC ¹⁰	PC ¹⁰
26. Extra BCD Cycle - 65C02	*	BCD		PBA

¹ A Dead Cycle is one in which the CPU is busy with an internal operation and does not make specific use of the external buses.

² Cycle numbers are with reference to Fetch_Opcode as cycle 1.

³ "*" denotes the cycle is added on a page crossing.

⁴ BAL and BAH refer to "Base Address Low" and "Base Address High" respectively.

⁵ FFA refers to a Fully Formed Address, which is the final target address of a given addressing mode.

⁶ PFA refers to a Partially-Formed Address, one which has yet to be adjusted, as follows:

• zpg,X/Y - ("00", BAL) Base address before the index register is added to the low-byte (BAL doesn't yet reflect the index offset)

- abs,X/Y - (BAH, BAL+X/Y) Base address before the low-byte carry is added to the high-byte (BAH doesn't yet reflect the page crossing)

• (zpg),Y - (BAH, BAL+Y) Base address before the low-byte carry is added to the high-byte (BAH doesn't yet reflect the page crossing)

• (zpg,X) – ("00", BAL) Base address before the index register is added to the low-byte (BAL doesn't yet reflect the index offset)

⁷ PBA refers to the Previous Bus Address (i.e., the value on the address bus from the previous cycle). This is the "fix" introduced by the 65C02. Re-reading the PBA is assumed to be a safe action, preferable to generating a "stray" read with an "invalid address", aka a Partially Formed Address (PFA), as the NMOS 6502 does. A PBA is also used on the 65C02 as a "safe" address for the dead cycle in JMP (abs) and the extra cycle in BCD operations.

⁸ abs,X/Y write operations without a page-crossing actually read from the Fully Formed Address before writing to it. The read can be troublesome when accessing I/O devices where reads are destructive. For 65C02 there's a software workaround, which is to ensure that the write to abs,X/Y triggers a page-crossing, which means the address during the dead cycle will be a PBA, not the Fully Formed Address. The only software workaround that works on both NMOS and CMOS 6502 is to avoid abs,X/Y address mode when writing to the read-sensitive device.

⁹ External Operations are Reads unless otherwise noted by "(W)".

¹⁰ PC refers to the address at PC, as follows:

- ▶ 1-Byte Opcodes Cycle 2 Address of next opcode
- ▶ RTS Cycle 6 Return address 1 (as retrieved from the stack)
- ▶ Branch (taken) Cycle 3 Address of next opcode after Branch
- Branch (taken) w/ pg. crossing Cycle 4 High-byte unchanged from prior cycle/Low-byte of target address (PCL + BOF¹³)

¹¹ "Read, Write, Modify" Opcodes refers to INC, DEC, ASL, LSR, ROL and ROR.

¹² On the 65C02, the "Modify" operation occurs in cycle 5 for ASL, LSR, ROL and ROR if a page is not crossed.

¹³ BOF refers to the Branch Offset value.

¹⁴ Dead cycles are 5 and 6* for 65C02 BBR and BBS (rather than cycles 3 and 4* for standard branches).

¹⁵ The behaviour shown for each CPU has been verified on the Visual 6502 (www.visual6502.org) and on a WDC 65C02 respectively. See also http://archive.6502.org/books/mcs6500_family_hardware_manual.pdf Appendix A.