
C74-6502 Datasheet  
The C74-6502 is a cycle-accurate, pin-
compatible implementation of the classic
6502 8-bit microprocessor. Built using strictly
discrete components, it can run at clock-
speeds of up to 20MHz and may be
configured to operate as an 6502, a 6510, or
65C02 processor.

With the addition of an optional "K24 Card”,
the CPU acquires certain WDC 65816
capabilities, namely a 24-bit address bus
(16MB memory space), additional
addressing modes and dozens of new
opcodes. The K24 Card also enables the
instruction-set to be switched
programmatically, allowing separate 6502
and 65C02 programs to run concurrently in
independent 64K "partitions".

Architecturally, the C74-6502 is a microcode-
based design where a 32-bit control-word is
decoded "on-the-fly" prior to use by the
Control Unit. A single-stage microcode
pipeline pre-fetches micro-instructions from
ROM, effectively eliminating the microcode
fetch time from the critical path, and allowing
the CPU to execute one microinstruction per
clock-cycle at 20MHz.

The C74-6502 implements all NMOS 6502
and WDC 65C02 instructions, interrupts and
functions, including Decimal Mode and
“Undocumented Opcodes” (with some
exceptions, as detailed below). The
C74-6502 uses 7400 series ICs from the AC,
LVC and CBT logic families for its circuitry,
which includes a discrete-component ALU,
an integrated 6510 I/O port and a built-in SPI
interface.

The CPU can operate in place of an existing
6502 IC in a host-computer through the use
of a custom 40-pin Socket-Adapter.
Alternatively, it may be installed in new
designs by way of standard pin headers.

See C74Project.wordpress.com for further
information on the C74 Project.

Specifications
•Cycle-accurate, pin-compatible 6502, 6510 &

65C02 operation2

• Implements all 6502 and 65C02 instructions

and functions, including Decimal Mode2

•Supports NMOS 6502 Undocumented

Opcodes2

• Includes an on-board 6-bit, bidirectional I/O

port which is compatible with the MOS 6510

•Custom 40-Pin Host Socket Adapter

•Compatible with TTL or CMOS Host Systems

•Auxiliary Power Supply Connections

• 0 to 20MHz Clock-Rate

•Operating Voltage: 5V3

•Current Draw: 130mA at 1MHz, 750mA at

20MHz3

K24 Card Optional Features: (untested)
• 24-bit address bus

•Additional 65816 instructions and addressing

modes

•Software selectable instruction-sets

•Built-in SPI Interface and custom Opcode

Notes:

1 The control word is 48 bits when the K24 card is installed

2 There are specific limitations and caveats to compatibility
with the target processors. These are described in detail
below and summarized in Appendix J.

3 Quoted figures reflect approximate measurements only

C74-6502 Datasheet (DRAFT v0.0) �1

http://C74Project.wordpress.com

Physical Assembly

The C74-6502 is comprised of two main
Eurocard PCBs, and a third optional card, as
follows:

 
Card A - Registers 
This card holds the processor's main
registers, the 6510 port and clock
management logic. Two separate headers
allow for both 6502 and 6510 pinout
connections, with the first also being
compatible with WDC and Rockwell 65C02
pinouts. On-board jumpers are used to
enable the /VP pin on the 6502 header and
the 6510 port. Jumpers also select between
host or auxiliary power supplies, and can
optionally engage a Zero Delay Buffer when
running at the highest clock-rates.  

Card B - ALU & CU  
This card holds the discrete-component
ALU, the P status register, flag management
logic, microcode sequencer, and interrupt
handling logic. On-board jumpers on this
card are used to select the microcode for the
active instruction-set, which then also set
other operating options accordingly.  

Card C - K24 (Optional) 
This card holds logic specific to
implementing a 24-bit address bus. It is
entirely optional, and the CPU will function
correctly without it. When installed, an 8-bit
Address Bus extension (ADX) is available as
a separate header on the K24 Card (which
requires custom connections to the host
system for use). A special K24 configuration
register (CFG) enables programmatic
switching of the active instruction-set and
associated operating options. The K24 Card
also implements a simple SPI Mode 3
interface on a dedicated header. This
interface may be accessed directly by the
CPU, without the need of any additional
circuitry or bit-banging software.

C74-6502 Datasheet (DRAFT v0.0) �2

Fig 1. C74-6502 & SBC In Stacked Configuration

Microcode

The C74-6502 will operate with one of
several available instructions sets. Each is
implemented as separate microcode and is
selectable via a pair of on-board jumpers on
Card-B labeled ALT and CMOS as follows:

 
The different microcode options are
described in more detail below.

6502 Microcode 
Implements all NMOS 6502 operations and
functions, including, with minor exceptions,
all bugs and other quirky behaviour. Decimal
Mode operations reproduce the same values
for all status flags as the original, including
those that are invalid. The JMP (ind) page-
crossing bug is replicated, as is the wrap-
around behaviour of zero-page indexed
addressing. Similarly, Read-Modify-Write
instructions in abs,X addressing mode take
seven cycles, whether or not a page is
crossed. "Undocumented" opcodes are
reproduced as well, except for ARR ($6B) in
Decimal Mode. "Unstable" opcodes are
given a fixed but sensible behaviour as
detailed in Appendix F. Other compatibility
notes are given on Appendix J.

65C02 Microcode 
Implements all WDC 65C02 instructions, and
is cycle-accurate, including reproducing
single and multi-cycle cycle NOPs. Opcodes
BBR, BBS, RMS, SMB, WAI and STP are
also included. Read-Modify-Write (RMW)

instructions reflect the fact that DEC and INC
(abs,X) always take seven cycles on the
original processor, but ASL, ASR, ROL and
ROR (abs,X) all take only six cycles if no
page boundary is crossed. The /ML signal is
held low during the read, modify and write
cycles of RMW instructions (see Appendix B
for details on connecting the /ML pin to host
systems). The microcode corrects the JMP
(ind) bug of the NMOS 6502, and also
executes this instruction in six cycles, rather
than five. Decimal Mode operations will
generate correct values for all flags (and take
an extra cycle to do so). Note that Decimal
mode SBC operations using invalid BCD
inputs will generate results compatible with
the NMOS 6502 only (see Decimal Mode
below). Finally, interrupts will automatically
clear the Decimal Flag, as the 65C02 does
(unless configured otherwise through the
K24 CFG register, see below).

6502+NOPs Microcode 
This microcode is useful when trying to avoid
the accidental execution of undocumented
opcodes - for instance, to prevent a KIL
operation from halting the CPU. It
implements the NMOS 6502 instruction set
also, but replaces undocumented opcodes
with cycle-accurate NOPs (i.e. NOPs which
take the same number of bytes and cycles
as the undocumented opcodes they replace,
but perform no function). It is otherwise cycle
and function-accurate.

K24 Microcode 
The K24 microcode implements additional
WDC 65816 instructions using a 24-bit
address space and 8-bit registers. This is
behaviour analogous to the 65816’s
Emulation Mode (E flag = 1 and M and X
flags are implied to be 1). All but MVN, MVP,
XCE and COP opcodes are implemented in

Jumpers Closed Microcode

0) None 6502

1) CMOS 65C02

2) ALT 6502+NOPs

3) ALT & CMOS K24

C74-6502 Datasheet (DRAFT v0.0) �3

the microcode. There a number of specific
incompatibilities to the 65816 worth noting
(full details are documented in Appendix H).

In addition, this microcode implements a
couple of opcodes particular to the K24
card. Namely, WDM ($42) is replaced by a
custom CFG opcode which sets the K24
CFG register; and COP ($02) is replaced by a
custom SPI opcode to enable the CPU to
communicate directly with an external SPI
device (details of both these opcodes can
be found below).

In order to facilitate two-way switching of the
active instruction-set, the CFG opcode ($42)
also appears in the 6502 and 65C02
microcode when the K24 Card is installed
and the CFG.EN jumper is engaged. Leaving
CFG.EN open will disable the CFG opcode
and CFG register. In that instance, $42
reverts back to its original function, and the
active microcode is then selected via the
dedicated jumpers on Card B as usual.

The 65816 instruction-set may be used when
the K24 Card is not present, but of course
addressing will be restricted to 16 bits.
Operations which read 65816 specific
registers will read a zero in that case, and
write operations to those registers will be
NOPs.

CPU Functions

Decimal Mode 
Decimal Mode operations differ in the three
supported processors in two minor respects
— the treatment of the status flags and
invalid BCD inputs. The NMOS 6502 sets
only the C-flag to a valid state after a
Decimal operation, leaving the N, Z and V

flags in an invalid state. The 65C02, on the
other hand, sets all four flags to a valid state,
but takes an extra cycle to do so.
Meanwhile, the 65816 sets all flags correctly
and does it all in one cycle.

The C74-6502 ALU can emulate the
behaviour of all three processors in this
respect, as controlled by two operating
options: 2-Cycle-BCD and BCD-Flags-Valid.
2-Cycle-BCD adds a cycle to Decimal Mode
instructions, while BCD-Flags-Valid will
cause the ALU to produce correct values for
all flags, as the 65C02 does.

These options are set automatically at
RESET based on the active instruction-set,
but may also be set manually through the
CFG opcode (see CFG Opcode below). Note
that the 65816 compatible configuration, i.e.,
enabling BCD-Flags-Valid while leaving 2-
Cycle-BCD disabled, will add few
nanoseconds of delay to the minimum CPU-
cycle and will therefore reduce the maximum
clock-rate. Since the 65816 implementation
is not cycle-accurate in any case, there is no
harm in enabling 2-Cycle-BCD for the 65816
instruction-set if operating at the highest
clock-rates is a priority. This is what the
hardware will do if configuring this option
automatically.

Decimal Mode SBC operations using invalid
BCD input values generate different results
on the 65C02. Valid BCD values use strictly
“0” through “9” as digits. Any value using the
hex digits “A” through “F” is considered
invalid, and generates undefined results
when used in Decimal Mode. The NMOS
6502 and the 65816 produce matching
results, but the 65C02 has minor differences
for SBC operations. For example:  

C74-6502 Datasheet (DRAFT v0.0) �4

  
All three processors generate “89” for “0 -
11”. On the other hand, “0 - $B” generates
“$8F” on the 65C02 and “$9F” otherwise.

The C74-6502 ALU generates results
compatible the NMOS 6502 and 65816
behaviour in this respect, regardless of the
microcode or Decimal Mode operating
options in effect. This incompatibility is a
potential source of errors when executing
65C02 software programs on the C74-6502.

Interrupt Handling 
The C74-6502 always processes interrupts
with the following priority: /RES then /NMI
then /IRQ. As with the NMOS 6502, an NMI
will preempt an IRQ if it occurs prior to the
interrupt vector being fetched from memory.
The IRQ will then be processed after the NMI
completes. /RES going low inhibits all writes
to memory but the processor otherwise
continues normal execution. The rising-edge
of /RES thereafter will trigger the Reset
interrupt, which is then processed at the next
SYNC cycle.

All interrupt signals are sampled on the
falling-edge of PHI2 and take-effect on the
next SYNC cycle following detection. This
rule is strictly observed, even after branch
instructions, which is NOT always the case
on 6502 processors. Depending on the CPU
variant and the conditions of the branch, a
branch instruction may delay the detection of
interrupts. (see http://forum.6502.org/
viewtopic.php?f=4&t=1634 and http://forum.
6502.org/viewtopic.php?
f=4&t=4129&p=45773#p45703). Although

strictly speaking incompatible, the behaviour
of the C74-6502 is more consistent and
yields lower interrupt latency.

By default, the interrupt service sequence
will clear the D Flag when the 65C02 or K24
microcode is selected, but will leave it
unchanged for NMOS 6502 operation. The
"Interrupt-CLD" internal operating option
controls this behaviour. This option is
automatically set by the hardware on RESET
based on the selected instruction-set, but
may also be set manually through the CFG
opcode (see CFG Opcode below).

Interrupt after BRK fetch: If an interrupt
occurs after a BRK instruction has been
fetched but before the interrupt vector is
invoked, the NMOS 6502 will perform the
interrupt and ignore the BRK. By contrast,
the CMOS 65C02 will execute the BRK and
process the interrupt thereafter (according to
the Rockwell R65C02 datasheet). The
C74-6502, on the other hand, combines
these two behaviours so that an interrupt will
preempt the BRK, but the BRK will then
execute once the interrupt completes.

Unnecessary Reads 
The 6502 interacts with memory on every
cycle, even if it does not yet have a fully
formed address. During indexed addressing,
for example, the NMOS 6502 will perform a
spurious read from a partially formed
address if a page boundary is crossed, and
discards the data. A similar problem
manifests during absolute-indexed store
operations, where the CPU always performs
a read just prior to the write. Here, the
address will be fully formed if no page
crossing takes place, but the read is
nevertheless spurious.

Operation 6502 65816 65C02

“0 - 11” 89 89 89

“0 - $B” $9F $9F $8F

C74-6502 Datasheet (DRAFT v0.0) �5

http://forum.6502.org/viewtopic.php?f=4&t=1634
http://forum.6502.org/viewtopic.php?f=4&t=1634
http://forum.6502.org/viewtopic.php?f=4&t=1634
http://forum.6502.org/viewtopic.php?f=4&t=4129&p=45773#p45703
http://forum.6502.org/viewtopic.php?f=4&t=4129&p=45773#p45703
http://forum.6502.org/viewtopic.php?f=4&t=4129&p=45773#p45703

Although normally benign, such unnecessary
reads can be destructive and trigger
unwanted (or in rare cases, wanted) side-
effects. A change was introduced in the
65C02 to re-use the address on the bus
(a.k.a the Previous Bus Address), as a
reasonably “safe” address, during read
cycles when the CPU is busy incrementing
the high-byte of a target address.
Unfortunately, that still leaves the processor
performing potentially destructive reads
during absolute-indexed store operations
when a page is not crossed.

The C74-6502 correctly replicates the
behaviour of both processors with regards to
unnecessary reads, except that absolute-
indexed store operations always use the
Previous Bus Address when the 65C02
instruction-set is active. See Appendix K for
a complete description of the behaviour of
the NMOS 6502 and 65C02 during such
unnecessary reads, as well as what the
C74-6502 does in each instance.

RMW Instructions 
The 65C02 performs two reads and a single
write during Read-Modify-Write instructions,
vs. the NMOS 6502 which does one read
and two writes. In both situations, the middle
cycle is a dummy-cycle when the CPU is
performing the internal "modify" portion of
the instruction. Performing a write in the
middle-cycle can have unintended (or in rare
cases, intended) consequences. The
C74-6502 matches the behaviour of each
target processor during the Read-Modify-
Write dummy-cycle (i.e., a write for the
NMOS 6502 and a read for the 65C02).

Microcode Pipeline 
A single-stage microcode pipeline enables
the CPU to support clock speeds of up to 20

MHz. The basic function of the pipeline is to
pre-fetch the next micro-instruction while the
current one executes - in essence,
overlapping the traditional fetch and execute
cycles for microcode. This pre-fetching has
the effect of ensuring a new micro-
instruction is always available when needed,
and the CPU can execute one micro-
instruction every 50ns without waiting.

K24 Card Initialization 
The K24 card hosts several dedicated
registers that are specifically initialized. On
Reset, the microcode zeroes the CFG
register and both the PBR and DBR Bank
registers. This defaults the CPU to NMOS
6502 compatible behaviour running in Bank
0 on startup.

K24 ADX Bus 
The ADX bus on the K24 Card header
implements the upper 8 bits of the optional
24-bit address bus. It requires custom

connections to the host system for use. See
Appendix B for a detailed description of the
K24 Pinout header.

C74-6502 Datasheet (DRAFT v0.0) �6

Fig. 2 - K24 Card & ADX Pinout Header (pic ***)

When the K24 microcode is active, the value
emitted on ADX will depend on the operation
and addressing mode in effect as follows:

When either the 6502 or 65C02 microcode is
active, the value emitted on ADX is follows:

If enabled, the 6510 port is mapped to bank
0 for the K24 microcode and to the current
data bank (DBR) otherwise.

CFG Opcode 
The CFG opcode ($42) appears in all
instruction sets when the CFG register is
enabled (which requires the K42 Card to be
present and the CFG.EN jumper on that card
to be closed). CFG replaces the KIL
undocumented opcode on the NMOS 6502,
a multi-cycle NOP on 65C02, and WDM on
the 65816. These Opcodes will revert back

to their original function if the CFG register is
disabled. CFG is a 2-byte, 3-cycle opcode
that will exchange the value of the A register
with the CFG register. Flags are unchanged.
The operand is ignored.

The format of the CFG Register is as follows:

The Bit 7 AUX control signal is output on
pin-5 of the K24 header and may used for
any creative purpose.

If the CFG register is disabled, the active
microcode is selected via jumpers on Card
B, and other operating options are set by the
hardware accordingly. In that instance, pin-5
on the K24 header will pull to GND.

Note that switching microcode using the
CFG Opcode does not alter either of the
65816-style Program or Data Bank Registers
resident in the K24 Card. This means that
multiple 6502 and 65C02 programs can be
made to run within specifically assigned 64K
banks in memory transparently and without
conflict. Sample code to illustrate a
rudimentary pre-emptive multitasking
scheme using NMI interrupts and CFG to
switch between tasks can be found in
Appendix I below.

SPI Opcode 
The K24 Card incorporates a simple SPI

Operation Addressing Mode ADX1

Interrupt Vector Fetch $00

Stack Access Implied $00

Data Access Zero Page $00

Data Access Standard Addressing DBR

Data Access Long Addressing Operand

Program Access Opcode Fetch,

JMP (abs), JSR(abs,x)

PBR

1ADX is adjusted to reflect bank boundary crossings
as appropriate.

Operation Addressing Mode ADX1

Interrupt Vector Fetch PBR

Stack Access Implied DBR

Data Access Zero Page DBR

Data Access Standard Addressing DBR

Program Access Opcode Fetch,

JMP (abs), JSR(abs,x)

PBR

1ADX is NOT adjusted at bank boundaries.

BIt Function

0..1 Microcode Select1

4 Enable 2-Cycle-BCD

5 Enable BCD-Flags-Valid

6 Enable Interrupt-CLD

7 AUX Control Signal

1Microcode 0 = 6502, 1 = 65C02, 2 = 6502+NOPs,
and 3 = K24.

C74-6502 Datasheet (DRAFT v0.0) �7

Mode 3 interface which enables the CPU to
communicate directly with a wide variety of
SPI enabled devices. A dedicated SPI
Header is available on the K24 Card with 3
independent Slave Select lines (See
Appendix B). The COP opcode ($02) in the
65816 instruction-set has been replaced with
a custom SPI opcode. SPI will exchange 8
bits in the A accumulator with the selected
SPI device over 8 consecutive clock-cycles,
MSB first. SPI is a 2-byte, 10 cycle
instruction. Flags are unchanged. The
instruction's single-byte operand is
formatted as follows:

Pinout 
The C74-6502 implements two distinct
pinout headers on Card A (physically, each is
composed of two 40-pin connectors,
providing 40 pins for CPU-pin signals, and
40 pins for GND lines).

The pinout header perpendicular to the
board is compatible with the NMOS 6502
and the CMOS 65C02, while the horizontal
one is compatible with a 6510. Certain
signals differ very slightly in function to the
originals but in all cases the circuitry is "well-
behaved" so the CPU should be pin-
compatible in all but rare circumstances. The
K24 Card provides access to the ADX bus
and useful control signals for 24-bit address
decoding on a dedicated header. Details are
provided in Appendix B.

Clock Signals 
The NMOS 6502 expects a PHI0 clock input
on pin-37, and generates PHI1 and PHI2 as
output signals. By contrast, the WDC 65C02
uses different nomenclature and refers to the
input clock as PHI2 and the output clocks as
PHI1O and PHI2O. The WDC documentation
indicates there is an "unspecified delay"
between the PHI2 input and the output
clocks, and recommends that the input clock
signal be used as a system clock

The C74-6502 uses the NMOS 6502
nomenclature (referring to the input clock as
PHI0), and allows the use of either the PHI0
input clock or the PHI2 output clock as the
system clock. As with the 65C02, the clock
may be stopped indefinitely at any time.
There is a delay of approximately 20ns
between PHI0 and PHI2 (typical tpd), which
can be safely ignored in most circumstances.
If the PHI0 input clock is used as a system
clock, however, this internal clock latency
may hinder the performance of the CPU at
clock-rates in excess of 14MHz. In those
circumstances, the on-board Zero Delay
Buffer should be enabled through the "ZDB"
jumper located on Card A.

BIt Function

0 SS0, Slave Select 0

1 SS1, Slave Select 1

2 SS2, Slave Select 2

7 Continue1

1Continue=0 will turn off the Slave Select lines at
the end of the instruction, while Continue=1 will
leave them on so data interchange may continue
with a following SPI instruction.

C74-6502 Datasheet (DRAFT v0.0) �8

Fig. 3 - Card A - 6502 & 6510 Pinout Headers

When enabled, ZDB will eliminate any
internal delay such that PHI2 will be exactly
co-incident with PHI0. When ZDB is enabled,
care must be taken to provide the CPU with
a constant-frequency, CMOS-level clock
signal of at least 5MHz. Note that the Zero
Delay Buffer requires 1ms to stabilize internal
clock signals. As a result, dynamically
adjusting the frequency of the clock when
ZDB is engaged will cause the CPU to fail.

6510 On-Board I/O 
The C74-6502 implements a discrete-
component 6510 compatible I/O port on
addresses $0000 and $0001. Although only
6 bits are on the CPU pins, the port is 8 bits
wide internally. The port can be enabled via
an on-board jumper (SJ2) located on Card A.
If the K24 card is present, the 6510 port will
be mapped to Bank 0 if the K24 microcode
is active, and to all banks otherwise. The
port pins are available on the 6510 Pinout
Header on Card A.

TTL Level Inputs 
The C74-6502 may be configured with "T"
variant ICs (i.e., 74ACT) on all input signals if
TTL input levels (rather than CMOS) are
expected on the CPU. Through-hole IC
sockets on Card A are provided for this
purpose. These are clearly marked on the
PCB as "74'132" and "74'245". They should
be fitted with 74AHCT132 and 74ACT245
ICs respectively to accept TTL level signals.

C74 Socket Adapter 
The C74-6502 may be connected to a host
computer using the C74 Socket Adapter and
ribbon cable. The Adapter can replace either
a 6502, 6510 or a 65C02 IC on the host
system. The ribbon cable should be
connected to either the 6502 or 6510
headers on Card A as appropriate.

The Adapter has header connectors topside,
where the ribbon cable connects, and
machined socket-pins below, which will plug
into a standard 40-pin IC socket.

Special care should be taken to orient the
ribbon cable connectors according to the pin
markings on Card A and on the adapter
itself. GND and VDD lines on the adapter
must be explicitly connected or bypassed to
ground before use, as described on
Appendix C.

Power Supply 
The C74-6502 may be powered from the
host computer through the Socket Adapter's
VDD pin. However, if the host is unable to
supply sufficient current, the Auxiliary Power

C74-6502 Datasheet (DRAFT v0.0) �9

Fig. 4 C74-6502 Using 6502 Pinout Header (pic***)

Fig. 5 - C74 Socket Adapter

terminal connectors on Card A can be used
to provide supplemental power the CPU. The
"Host Power" jumper on Card A should be
left open to select Auxiliary Power, or closed
to rely solely on the host. If external power is
used, care should be taken in the design of
the external supply circuit that ensures
voltage levels are synchronized with the
host. Details can be found in Appendix I.  

C74-6502 Datasheet (DRAFT v0.0) �10

CPU Timing Requirements

1Note: “Measured” times above reflect an average of measurements taken and are accurate within 2.5ns. “Typical” times
are derived by calculating signal propagation delays using “typical” figures given on component manufacturer datasheets.
Where only Min and Max values are available for such figures , the mid-point between those two is used as a proxy.  

C74-6502 Datasheet (DRAFT v0.0) �11

Symbol Parameter Typical1 Measured1 Unit

tACC Max. Access Time (at 20MHz) 22 30 ns

tADS Address Setup Time 23 15 ns

tAH Address Hold Time 23 15 ns

tDHR Read Data Hold Time 0 ns

tDHW Write Data Hold Time 22 15 ns

tDSR Read Data Setup Time 5 ns

tDSW Write Data Setup Time 22 15 ns

tPCH Processor Control Hold Time 0.5 ns

tPCS Processor Control Setup Time 11 ns

tPWH Minimum Clock Pulse Width High 25 ns

tPWL Minimum Clock Pulse Width Low 25 ns

tRWH R/W Signal Hold Time 24 20 ns

tRWS R/W Signal Setup Time 24 20 ns

Fig. 6 - General Timing Diagram

Switching Characteristics (TA = 25º, V = 5V)

Appendix A 
Configuration Summary

The table below illustrates how the C74-6502 may be configured to emulate the
behaviour of the various target CPUs as closely as possible. There are, nevertheless, limitations
to the compatibility achieved in each case, and these are detailed in Appendix J.

1Note: The C74-6502 closely emulates the behaviour of the WDC 65816’s Emulation Mode only (i.e., E flag = 1, M and X flags = 0).
See Appendix H for details and limitations
2Note: When connecting the C74-6502 to a host-system which expects a Rockwell 65C02, Pin 1 should be connected to ground
at the Socket Adapter and the /VP jumper on Card A should be disabled. See Appendix B for further details.

3Note: Pin 5 is Not Connected on NMOS 6502 and 6510 microprocessors. The C74-6502 drives Pin 5 with /ML. If the host system
has PIN 5 grounded, then the pin on the Adapter should be removed so as to leave it floating for the CPU to drive.

Jumper/Parameter NMOS 6502 NMOS 6510 WDC 65C02 WDC 658161

Pin Header 6502 6510 6502 6502 & K24

Card A: 6510 Port Disable Enable Disable Disable

Card A: /VP2 Disable Disable Enable Enable

Card A: Host Power Enable if powering the CPU solely from the host computer

Card A: *DP Enable Enable Disable Disable

Card A: 74'245 Socket Use 74ACT245 for TTL levels, otherwise 74AC245

Card A: 74'132 Socket Use 74AHCT132 for TTL levels, otherwise 74AC132

Card A: ZDB Enable for >14MHz if PHI0 is used for peripherals

Card B: ROM.SEL None or ALT None or ALT CMOS CMOS & ALT

Card C: K24 Header ADX & 816 signals available if K24 Card is installed

Card C: CFG.EN Enable for dynamically selecting the Instruction-Set and options

CFG[1..0]: Microcode 6502 or
6502+NOPs

6502 or
6502+NOPs 65C02 K24

CFG[4]: 2-Cycle-BCD Disable Disable Enable Enable

CFG[5]: BCD-Flags-Valid Disable Disable Enable Enable

CFG[6]: Interrupt-CLD Disable Disable Enable Enable

CFG[7]: AUX AUX Control Signal Output on Pin-5 of the K24 header

Socket Adapter VDD Pin 8 Pin 6 Pin 8 N/A

Socket Adapter GND2 Pin 1 & 21 Pin 21 Pin 21 N/A

Socket Adapter PIN 53 N. C. N. C. Connected N/A

C74-6502 Datasheet (DRAFT v0.0) �12

Appendix B 
Headers & Pinouts

6502 & 6510 CPU Pinout
• The 6502 header should be used when connecting to a host system intended for either a

6502 or 65C02.

• A jumper (SJ3) on Card A is used to enable the /VP signal on Pin 1 for compatibility with a

WDC 65C02 socket. The jumper should be left open otherwise.

• RDY will pause the CPU if it is taken low anytime before the falling of PHI2, including for

write cycles.

C74-6502 Datasheet (DRAFT v0.0) �13

• RDY can operate as an input-only or as a bi-directional pin, for use with 65C02 WAI
instruction. If use of the WAI instruction is anticipated, it is recommended that RDY be
driven through a Schottky Diode and an accompanying 470 Ohm pull-up resistor. If RDY is
driven directly by external circuitry, then the WAI instruction may not pause the CPU.

• The 65C02 BE pin and the 6510 AEC pin are equivalent in function and are connected to
the same circuitry internally. When low, either will take the address bus, data bus and R/W
pin to a high-impedance state asynchronously.

• Signals are active simultaneously on both headers so one can interrogate /VP on the 6502
header while using the 6510 header for all other signals. Note that the /ML signal is only
active if the 65C02 or K24 microcode is selected.

Optional K24 Header and SPI.CON Pinout
• Two control signals are available on the K24 header to aid in address decoding. They are

“/816MODE” on pin1 (low when the K24 microcode is active) and “/816BNKH” on pin 3 (low
when an instruction addresses a bank other than bank 0). An internal address decoder, for
example, uses these signals to enable the 6510 port when /816BNKH is high. This maps the
6510 port to Bank 0 when the K24 microcode is active but to all banks otherwise.

• The K24 header outputs the AUX control signal on Pin-5. It is taken directly from the CFG
register bit-7 and may be used for any user-defined purpose. For example, the signal may
be used to switch clock-rates under software control. This signal is pulled low if the CFG
register is disabled.

• The K24 Card implements a simple SPI Mode 3 interface on the SPI.CON header, as shown
above (based on Garth Wilson’s SPI-10 standard, see http://forum.6502.org/viewtopic.php?
f=4&t=4264). Up to three Slave Select signals are available. When in use, the CPU will
toggle SCLK once per CPU cycle to provide very fast access to SPI devices. 

C74-6502 Datasheet (DRAFT v0.0) �14

http://forum.6502.org/viewtopic.php?f=4&t=4264
http://forum.6502.org/viewtopic.php?f=4&t=4264

Appendix C 
Series Resistors & Socket Adapter

Series Resistors 
The series resistors on Card A are meant to enhance signal integrity on connections to the host
computer. Ideally the value of these resistors plus the output impedance of the drivers should
match the characteristic impedance of the ribbon cable used. Series resistors R8, R21, and
R35 are marked on the PCB with a white line to indicate they are 0 Ohm resistors. Their leads
are connected internally so physical resistors need not be installed.

C74 Socket Adapter

There are two pinouts headers on the TTL CPU, one for the 6502 pinout and another for the
6510. Each pinout header has a total of 80 pins, with 40 pins carrying signals for the particular
processor's pins, and 40 being ground connections for better signal integrity. Correspondingly,
the C74 Socket Adapter has 80 pins as well, arranged as two 40-pin headers.

Fig. 7 - C74 40-Pin Socket Adapter

The inner rows of pins on the headers are connections to ground, while the outer rows carry
processor signals to the Adapter's underside socket pins. The pads corresponding to GND and
VDD socket pins of a given pinout must be explicitly connected to the grounded vias located
on the top and bottom edges of the PCB. GND pins should be connected to a nearby via with
a jumper or SMD 0 Ohm resistor. For VDD pins, a 0.1uF capacitor should be used. SMD 0603
or 0805 packages will all fit in the available space between pads and vias.

Refer to Appendix A above for correct VDD and GND pin assignments for the various
supported CPUs. It is desirable to build multiple adapters, one for each pinout variation, to
match pins assignments required for the various host systems1.

1Note: The C74-6502 drives Pin 5 with /ML when either the WDC 65C02 or K24 microcode is selected. It may be desirable to
remove Pin 5 from the Adapter if Pin 5 is grounded on the host system and use of either microcode is anticipated.  

C74-6502 Datasheet (DRAFT v0.0) �15

Appendix D  
Sample Power Supply Circuit

The C74-6502 may be powered externally if the host does not provide enough current for
the CPU to operate1. To do so, the “Host Power” jumper on Card A should be dis-engaged and
the on-board power terminals connected to an external power source. Below is a suggested
external power circuit in which a buffer amplifier tracks the host-power as it ramps up, causing
the CPU to ramp up with the same waveform. The circuit requires an op-amp and a power
transistor that supply power from the external supply to the CPU. The "+" input of the op-amp
attaches to the host "+5". The "-" input of the op-amp is for feedback, creating a voltage
follower. This simple circuit ensures that the instant that the host computer is at 2V, for
example, the CPU will also be at 2V, and so on.  

 

C74-6502 Datasheet (DRAFT v0.0) �16

Fig. 8 - Power Supply Circuit

1The C74-6502’s current draw at 1MHz is comparable to the 130mA the NMOS 6502 and 6510 microprocessors require. The
need for external supplemental power is therefore unlikely when connecting to legacy systems that use these microprocessors,
such as the Commodore VIC 20 or C64 computers. Current draw may become an issue, however, when replacing a CMOS
65C02 microprocessor within and existing motherboard. In such cases, the auxiliary Power terminals on Card A may be used.

Appendix E 
NMOS 6502 Undocumented Opcodes

The table below summarizes the C74-6502 implementation of NMOS
Undocumented Opcodes. All Stable Opcodes are cycle and function accurate, with the
exception of the notoriously complicated $6B (ARR) in Decimal Mode (See http://
forum.6502.org/viewtopic.php?f=4&t=3493&start=117 for a detailed description of ARR
by ttlworks). Note that some Undocumented Opcodes do not meet the requirements
for 20MHz operation (see Appendix J for details).

Opcode (Aka) OP Addr Bytes Cycles Flags Function

KIL $02 imp 1 ? None Halt CPU (performs a 65C02 STP)

$12 imp 1 ?

$22 imp 1 ?

$32 imp 1 ?

$42 imp 1 ?

$52 imp 1 ?

$62 imp 1 ?

$72 imp 1 ?

$92 imp 1 ?

$B2 imp 1 ?

$D2 imp 1 ?

$F2 imp 1 ?

LAX $A7 zp 2 3 NZ A, X <= MEM(adr)

$B7 zp,y 2 4

$AF abs 3 4

$BF abs,y 3 4*

$A3 (ind,X) 2 6

$B3 (ind),y 2 5*

LDD (NOP) $80 imm 2 2 None Load and Discard - Multi-cycle NOP

Opcode (Aka)

C74-6502 Datasheet (DRAFT v0.0) �17

http://forum.6502.org/viewtopic.php?f=4&t=3493&start=117
http://forum.6502.org/viewtopic.php?f=4&t=3493&start=117

$82 imm 2 2

$89 imm 2 2

$C2 imm 2 2

$E2 imm 2 2

$04 zp 2 3

$44 zp 2 3

$64 zp 2 3

$14 zp,x 2 4

$34 zp,x 2 4

$54 zp,x 2 4

$74 zp,x 2 4

$D4 zp,x 2 4

$F4 zp,x 2 4

$0C abs 3 4

$1C abs,x 3 4*

$3C abs,x 3 4*

$5C abs,x 3 4*

$7C abs,x 3 4*

$DC abs,x 3 4*

$FC abs,x 3 4*

NOP $1A imp 1 2 None No Operation - 2-cycle NOP

$3A imp 1 2

$5A imp 1 2

$7A imp 1 2

$DA imp 1 2

$FA imp 1 2

RLA $27 zp 2 5 NZC MEM(Adr) <= ROL(adr), A <= A AND (adr)

$37 zp,x 2 6

$2F abs 3 6

OP Addr Bytes Cycles Flags FunctionOpcode (Aka)

C74-6502 Datasheet (DRAFT v0.0) �18

$3F abs,x 3 7

$3B abs,y 3 7

$23 (ind,x) 2 8

$33 (ind),y 2 8

RRA $67 zp 2 5 NZCV MEM(adr) <= ROR (adr), A <= A ADC (adr)

$77 zp,x 2 6

$6F abs 3 6

$7F abs,x 3 7

$7B abs,y 3 7

$63 (ind,x) 2 8

$73 (ind),y 2 8

SLO $07 zp 2 5 NZC MEM(adr) <= ASL(adr), A <= A ORA(adr)

$17 zp,x 2 6

$0F abs 3 6

$1F abs,x 3 7

$1B abs,y 3 7

$03 (ind,x) 2 8

$13 (ind),y 2 8

SRE $47 zp 2 5 NZC MEM(adr) <= LSR (adr), A <= A EOR (adr)

$57 zp,x 2 6

$4F abs 3 6

$5F abs,x 3 7

$5B abs,y 3 7

$43 (ind,x) 2 8

$53 (ind),y 2 8

DCP $C7 zp 2 5 NZC MEM(adr) <= DEC (adr), A <= A CMP (adr)

OP Addr Bytes Cycles Flags FunctionOpcode (Aka)

C74-6502 Datasheet (DRAFT v0.0) �19

$D7 zp,x 2 6

$CF abs 3 6

$DF abs,x 3 7

$DB abs,y 3 7

$C3 (ind,x) 2 8

$D3 (ind),y 2 8

ISC (ISB) $E7 zp 2 5 NZCV MEM(adr) <- INC (adr), A <= A SBC (adr)

$F7 zp,x 2 6

$EF abs 3 6

$FF abs,x 3 7

$FB abs,y 3 7

$E3 (ind,x) 2 8

$F3 (ind),y 2 8

SBC $EB imm 2 2 NZCV A <= A SBC (imm)

ANC $0B Imm 2 2 NZC A <= A AND Imm, Carry <= A.7;

$2B Imm 2 2

LAS (LAR) $BB abs,y 3 4* NZ A,X,SP <= MEM(adr) & SP

“A&X” Group

SAX (AAX) $87 zpg 2 3 None MEM(Adr) <- A&X

$97 zpg,y 2 4

$83 (ind,X) 2 6

$8F Abs 3 4

AXS $CB imm 2 2 NZC X <= A&X SBC1 Imm;

where SBC1 means SBC w/ C = 1.

Always in binary mode

OP Addr Bytes Cycles Flags FunctionOpcode (Aka)

C74-6502 Datasheet (DRAFT v0.0) �20

"Unstables" - Magic Constant Group

ALR $4B imm 2 2 NZC A <= A AND (MAGIC | #IMM), A <= LSR A

ARR $6B imm 2 2 NZCV A <= A & (MAGIC | #IMM), ROR A;

Special Flags Handling in Binary Mode:

C <= A.6, V <= A.6 XOR A.5

Decimal Mode NOT IMPLEMENTED

Will behave the same as Binary Mode

LXA $AB imm 2 2 NZ A,X <= (MAGIC | A) & #IMM

XAA $8B imm 2 2 None (MAGIC | A) & X & #IMM => A$FF"

"Unstables" - & (H + 1) Group

AHX $9F abs,Y 3 5 None MEM(adr) <= A&X AND hi(adr) + 1*

$93 (ind),Y 2 6

SHX $9E abs,y 3 5 None MEM(adr) <= X AND hi(adr) + 1*

SHY $9C abs,x 3 5 None MEM(adr) <= Y AND hi(addr) + 1*

TAS $9B abs,y 3 5 None SP <= A&X,

MEM(Adr) <= A&X AND hi(adr) + 1*

*where hi(adr) + 1 refers to the upper byte
of the target address plus 1

OP Addr Bytes Cycles Flags FunctionOpcode (Aka)

C74-6502 Datasheet (DRAFT v0.0) �21

Appendix F 
NMOS 6502 Unstable Opcodes

“Unstable Opcodes” are known as such because their behaviour varies based on the
characteristics of the host computer, and with the operating environment at the time of
execution. This variability presents immense challenges when trying to model these opcodes.
There is simply too much ambiguity to define a single deterministic function; any one behaviour
will work in some instances and fail in others. A practical approach, therefore, is to settle on
one set of "common" behaviours and hope to address a meaningful subset of all possible
variations. The C74-6502 adopts just such an approach, and treats unstable opcodes as
follows:

1. “& (H+1)” Group: AHX($9F, $93), SHX($9E), SHY$(9C), TAS($9B) - these opcodes
exhibit two instabilities - the “& (H+1)” operation is "sometimes" dropped and the high-byte of
the target address may be corrupted on page-crossings. Tests on a VIC20 show that page-
crossings that stay within the lower nibble of the high-byte appears to work correctly, but it's
hard to be definitive about this. Consequently, the C74-6502 honours the “& (H+1)” construct in
all cases and ignores any page-crossing anomalies.

2. MAGIC Constant Group: ALR($4B), ARR($6B), XAA/ANE($8B), LXA ($AB) - these
opcodes are dependent on a so-called MAGIC constant which in fact changes across systems
and even within specific systems at different times. Some claim that of these opcodes, only
$8B and $AB are in fact unstable, but specific tests showed differences do exist with the
others as well. There simply seems to be no one right answer for the value of MAGIC. The
C74-6502 somewhat arbitrarily uses specific values for MAGIC as convenient and plausible
options knowing full well this will not work in all instances. With the chosen values, these
opcodes reduce to the following functions:  

• ALR($4B): A <= A & (MAGIC | #IMM), A <= LSR A, where (MAGIC = $00) becomes  
	 A <= A & #IMM, A <= LSR A

• ARR($6B): A <= A & (MAGIC | #IMM), ROR A, where (MAGIC = $00) becomes A <= A & #IMM, ROR A

• XAA($8B): A <= (MAGIC | A) & X & #IMM, where (MAGIC = $FF) becomes A <= X & #IMM

• LXA($AB): A,X <= (MAGIC | A) & #IMM, where (MAGIC = $FF) becomes A,X <= #IMM.

As noted above, this set of behaviours is at best a compromise, but nevertheless provide
a reasonable approach to these opcodes. Namely, that software that properly accounts for the
variabilities in the "unstables" will run on the C74-6502 without a problem. This can be done,
as the excellent paper “No More Secrets” (http://csdb.dk/release/?id=143981) suggests, by not
relying on a given value for MAGIC and by keeping page boundaries well away from "& (H+1)”
instructions. Otherwise, all bets are off on this as well as all other 6502 implementations.

C74-6502 Datasheet (DRAFT v0.0) �22

http://csdb.dk/release/?id=143981

“Do not use [Magic Constant Group Opcodes] with any other immediate value than 0, or when the
accumulator value is $ff (both takes the magic constant out of the equation)! (Or, more generalized, these
are safe if all bits that could be 0 in A are 0 in either the immediate value or X or both.)”

NO MORE SECRETS, NMOS 6502 Unintended Opcodes.  

C74-6502 Datasheet (DRAFT v0.0) �23

Appendix G 
65C02 NOPs

The 65C02 instruction set guarantees that all unused opcodes are NOPs, but in fact not
all NOPs are created equal. Several NOP operations in fact follow standard addressing modes
and perform specific memory reads, just as LDA might, but then simply discard the value
retrieved. Dr Jefyll has dubbed these opcodes “LDD” operations, for Load and Discard, which
is a fitting name1. Other NOPs are single-byte, single-cycle operations which immediately fetch
the next opcode - we’ll call these “NOP1” opcodes. In order to maintain compatibility with the
65C02, the C74-6502 implements these opcodes as follows:

It’s interesting to note that LDD opcodes follow exactly the same bus cycles as the
corresponding load instructions, except $5C which takes 8 cycles.

1See http://laughtonelectronics.com/Arcana/KimKlone/
Kimklone_opcode_mapping.html

2Except for WAI ($CB) and STP ($DB) opcodes

Opcode Mnemonic Bytes Cycles

$x3, $xB (all opcodes ending in $3 or $B)2 NOP1 1 1

$02, $22, $42, $62, $82, $C2, $E2 LDD # 2 2

$44 LDD zpg 2 3

$54, $D4, $F4 LDD zpg, X 2 4

$5C N/A 3 8

$DC, $FC LDD abs 3 4

C74-6502 Datasheet (DRAFT v0.0) �24

http://laughtonelectronics.com/Arcana/KimKlone/Kimklone_opcode_mapping.html
http://laughtonelectronics.com/Arcana/KimKlone/Kimklone_opcode_mapping.html

Appendix H 
K24 Microcode Compatibility Notes

The C74-6502 K24 microcode implements 65816 instructions as they behave when that
processor’s Emulation Mode is active (i.e., E-flag is set to 1). In that situation, the 65816’s 24-
bit address space and extended addressing modes are available, but the A, B, X and Y
registers are all 8 bits (M and X flags are both implied to be 1).

The C74-6502 K24 implementation of 65816 instructions has the following incompatibilities:

• It is not cycle-accurate

• The MVN, MVP, COP and XCE opcodes are not implemented.

• The ABORT and COP Interrupt Vectors are not implemented. K24 uses the same addresses

as the 6502 for RES, NMI and IRQ vectors.

• Opcode $42 (WDM) is replaced by the CFG instruction, which will exchange the contents of

the A accumulator with the CFG register

• Opcode $02 (COP) is replaced by the SPI instruction, which will swap 8 bits with a

selected SPI device as documented above

• The Direct Page register (DH) is 8 bits and points only to page boundaries. The PHD and

PLD instructions still push and pull 16 bits on the stack with $00 as the low byte.

• The A & B accumulators cannot be combined into a 16 bit C register. TCS, TSC use only

the A accumulator (low-byte); TCD, TDC only the B accumulator (high-byte).

• SP is 8 bits. The stack is fixed to bank $00 page $01 and all opcodes which push or pull

values on the stack will wrap on a page boundary.

• Other rules for crossing bank boundaries are correctly applied (e.g., Abs,Y or [Ind],Y)

C74-6502 Datasheet (DRAFT v0.0) �25

Fig. 9 - Programming Model (K24 Additions In Blue)

Appendix I 
Rudimentary Multitasking

The C74-6502’s CFG opcode enables the processor to switch instruction-sets under
program control. Since CFG does not alter the values in the Data Bank Register or the Program
Bank Register, 6502 and 65C02 tasks can be made to run in different 64K memory banks
concurrently and independently. To illustrate, below is sample code for a very rudimentary
preemptive multitasking scheme which executes a monitor program in Bank 0 and runs three
tasks concurrently. This example runs Klaus Dormann’s NMOS 6502 Test Suite in Bank 1, his
CMOS 65C02 Test Suite in Bank 2 and Bruce Clark’s NMOS 6502 Decimal Test in Bank 3.

The monitor program runs in K24 mode and interrupts the currently executing task at
regular intervals on an NMI. It saves state, switches banks, restores state and performs an RTI
to launch the previously interrupted task. NMIISR and RESUME are stub code segments that
need to placed in each bank at some open same location. NMI vectors in every bank should
point to NMIISR and the long-JMP at the end of the monitor program must point back to the
RESUME stub (note that the monitor program self-modifies the long-jump address with the
current bank). The monitor’s RESET entry point performs initialization and launches the first
task. Bank 0 RESET vectors should be pointed to it.

; NMI interrupt Service
; S/b loaded into every bank
; NMI vectors point here

NMIISR sei
 pha ; save state
 txa
 pha
 tya
 pha

 lda #3 ; Switch to K24
 .byte $42 ; CFG opcode
 .byte $00

 .byte $5C ; JMP lng
 .word BNKSW ; to Monitor
 .byte $00 ; in bank 0

; Resume entry point to re-launch task.
; S/b loaded into every bank
; JMP target from BNKSW below

RESUME .byte $42 ; CFG in A
 .byte $00
 pla ; restore state
 tay
 pla
 tax
 pla
 rti

C74-6502 Datasheet (DRAFT v0.0) �26

; MONITOR loads at $0000 bank 0
; s/b invoked on RESET to initialize

* = $0000

RESET sei

; Enable 65816 Mode

 lda #3
 .byte $42 ; CFG Opcode
 .byte 00

; Initialize SP in Task Table

 lda #F9 ;Set SP to $F9 to
 sta csp+1 ;allow room for
 sta csp+2 ;initial stk frame
 sta csp+3 ; 3 bytes RTI
 ; 3 bytes A, X, Y

; initialize RTI stack frame in each bank
; initial values for A, X, Y are left undefined

 lda #$04 ; Start @ $0400
 sta $0101FF
 sta $0201FF
 lad #$02 ; Start @ $0200
 sta $0301FF

 lda #$00
 sta $0101FE
 sta $0101FD
 sta $0201FE
 sta $0201FD
 sta $0301FE
 sta $0301FD

 stz cbnk ; start in bnk 0

; BANK SWITCH entry Point

BNKSW lda #0 ; go to bnk0
 pha
 plb

 ldx cbnk ; index task tabl
 tsc ; save SP to tabl
 sta csp,x

 inx ; next bnk
 cpx #maxbnks
 bne skp
 ldx #$01

skp stx cbnk

 lda csp,x ; restore SP
 tcs
 lda ccfg,x ; restor CFG to A

 phx ; save cbnk
 plb ; switch cbnk

 ; jump to the target bank (cbnk)

 .byte $5C ; JMP lng
 .word RESUME
cbnk .byte $00

; Task Table

maxbnks = 4

csp .byte $F9 ; SP
 .byte $F9
 .byte $F9
 .byte $F9

ccfg .byte $00 ; CFG
 .byte $00 ; 6502
 .byte $71 ; 65C02
 .byte $02 ; 6502+NOP

C74-6502 Datasheet (DRAFT v0.0) �27

Appendix J 
Notes & Caveats

Functional Differences For NMOS 6502 Operation:

• A branch-taken does NOT delay detection of interrupts to the next instruction

• A BRK that is pre-empted by an interrupt will not be ignored but will execute once the

interrupt completes

• “Unstable” opcodes are Undocumented opcodes whose behaviour is non-deterministic

— that is, their varies depending on the characteristics of the host system and other
environmental factors. On the C74-6502 they have been given a fixed functionality as
outlined in Appendix F

• The Undocumented Opcode ARR behaves the same way in Decimal as in Binary mode

Other Compatibility Notes:
• Decimal Mode SBC operations with invalid BCD inputs generate results matching the

NMOS 6502 in all instances, regardless of the selected microcode

• All 6502 variants perform a spurious read of the target address during absolute-indexed

store operations where a page-crossing does NOT occur. The C74-6502 reads the
Previous Bus Address in such circumstances when the 65C02 instruction set is active.

•Writes to memory are inhibited when /RES goes low. The Reset sequence is invoked on
the next SYNC cycle following the rising-edge of /RES

• If RDY is driven directly externally, the WAI instruction will not drive RDY low and the CPU
will not pause. It is recommended that RDY be driven externally through a Shottky diode
and accompanying pull-up resistor for use with the WAI instruction

• The 65816 instruction-set incompatibilities are outlined in Appendix H

Notes On 20MHz Operation:
• "Typical" Total Propagation Delay figures have been used to calculate the CPU's critical

path. The C74-6502 has been tested for stable operation at 20MHz. Actual performance
may slower (or faster) under various operating conditions.

• The PHI2 output clock signal is delayed by approximately 20ns relative to the PHI0 input
clock (when the ZDB jumper is not engaged). If clocking using PHI0 input clock, enable
ZDB.

• The operating option BCD-Flags-Valid provides compatibility with 65C02 Decimal Mode
but imposes a slight delay doing so. The 2-Cycle-BCD operating option provides an
internal wait-state to accommodate this delay, exactly as the 65C02 does. These two
options, therefore, should be enabled together for full compatibility. Leaving 2-Cycle-BCD
disabled removes this internal wait-state and may therefore prevent the correct operation
of the Decimal Mode circuitry at high clock-rates.

C74-6502 Datasheet (DRAFT v0.0) �28

•NMOS 6502 Undocumented Opcodes are typically used only in rare and specialized
situations - mostly to obfuscate copy-protection mechanisms. When used, a select few of
these may limit the C74-6502’s maximum clock-rate as follows:  

C74-6502 Datasheet (DRAFT v0.0) �29

Opcode Clock-Rate1

SAX, AXS, ANE 19MHz

Decimal Mode RRA, ISC 17MHz

AHX, SHX, SHY, TAS 14MHz

1The clock-rate quoted is based on “typical” tdp figures.
Actual limits may be higher in practice.

Appendix K 
Unnecessary Reads (Dead Cycles)

A Dead Cycle is one in which the CPU is busy with an internal operation and does not make
specific use of the external buses. The following table summarizes the behaviour of the NMOS
6502 and CMOS 65C02 processors, and the corresponding implementation of the C74-6502
instructions-sets. Note the highlight in line 3 of the table where the C74-6502 behaviour differs
from the CMOS 65C02.

NOTES:
1. A Dead Cycle is one in which the CPU is busy with an internal operation and does not make specific use of the external buses.

2. Cycle numbers are with reference to Fetch_Opcode as cycle 1.	 	 	 	 	

3. "*" denotes the cycle is added on a page crossing.	 	 	 	 	

4. BAL and BAH refer to "Base Address Low" and "Base Address High" respectively.	 	

5. FFA refers to a Fully Formed Address, which is the final target address of a given addressing mode.

6. PFA refers to a Partially-Formed Address, one which has yet to be adjusted, as follows

▸ zpg,X/Y — (""00"", BAL) Base address before the index register is added to the low-byte (BAL doesn't yet reflect the index offset

▸ abs,X/Y — (BAH, BAL+X/Y) Base address before the low-byte carry is added to the high-byte (BAH doesn't yet reflect the page crossing)

▸ (zpg),Y — (BAH, BAL+Y) Base address before the low-byte carry is added to the high-byte (BAH doesn't yet reflect the page crossing)

6502 Dead Cycles1 Internal
Operation4

External
Operation

External
Operation

External
Operation

External
Operation

Opcode/Addressing Mode Cycle2,3 650215 65C0215 C74-6502 C74-65C02
1 zpg,X/Y 3 BAL	+	X PFA6 PBA7 PFA6 PBA7

2 abs,X/Y	—	read	w/	pg.	crossing 4* BAH	+	1 PFA PBA PFA PBA

3
abs,X/Y	—	write	w/o	pg.	
crossing8 4 BAH	+	0 FFA5,8 FFA5,8 FFA5,8 PBA

4
abs,X/Y	—	write	w/	pg.	
crossing 4 BAH	+	1 PFA PBA PFA PBA

5 (zpg),Y	—	read	w/	pg.	crossing 5* BAH	+	1 PFA PBA PFA PBA

6
(zpg),Y	—	write	w/o	
pg.crossing 5 BAH	+	0 FFA PBA FFA PBA

7 (zpg),Y	—	write	w/	pg.crossing 5 BAH	+	1 PFA PBA PFA PBA
8 (zpg,X) 3 BAL	+	X PFA PBA PFA PBA

9
RMW	zpg,X	—	"Read,	Modify,	
Write"	Opcodes11 3 BAL	+	X PFA PBA PFA PBA

10
RMW	abs,X	—	6502	w/o	pg.	
crossing 4 BAH	+	0 FFA FFA

11
RMW	abs,X	—	6502	w/	pg.	
crossing 4 BAH	+	1 PFA PFA

12
RMW	abs,X	—	65C02	INC/DEC	w/o	
pg.	crossing 4 BAH	+	0 FFA FFA

13
RMW	abs,X	—	65C02	INC/DEC	w/	
pg.	crossing 4 BAH	+	1 PBA PBA

14
RMW	abs,X	—	65C02	ASL	LSR	ROL	
ROR	w/	pg.	crossing12 4* BAH	+	1 PBA PBA

15 RMW	zpg 4 Modify FFA	(W)9 FFA FFA	(W)9 FFA
16 RMW	abs 5 Modify FFA	(W) FFA FFA	(W) FFA
17 RMW	zpg,X 5 Modify FFA	(W) FFA FFA	(W) FFA
18 RMW	abs,X 612 Modify FFA	(W) FFA FFA	(W) FFA

19 All	1	Byte	Opcodes 2 — PC10 PC10 PC10 PC10

20 JMP	(abs)/(abs,X)	—	65C02 4 — PBA PBA
21 JSR 3 — SP SP SP SP
22 RTS,	RTI,	PLP,	PLA,	PLY,	PLX 3 SP	+	1 SP SP SP SP
23 RTS 6 PC	+	1 PC10 PC10 PC10 PC10

24 Branch	(taken)14 3
PCL	+	
BOF13 PC10 PC10 PC10 PC10

25
Branch	(taken)	—	w/	pg.	
crossing14 4* PCH	+/-	1 PC10 PC10 PC10 PC10

26 Extra	BCD	Cycle	—	65C02 * BCD PBA PBA

C74-6502 Datasheet (DRAFT v0.0) �30

▸ (zpg,X) — (""00"", BAL) Base address before the index register is added to the low-byte (BAL doesn't yet reflect the index offset)	 	
	

7. PBA refers to the Previous Bus Address (i.e., the value on the address bus from the previous cycle). This is the “fix” introduced by the 65C02. Re-
reading the PBA is assumed to be a safe action, preferable to generating a "stray" read with an "invalid address", aka a Partially Formed Address
(PFA), as the NMOS 6502 does. A PBA is also used on the 65C02 as a "safe" address for the dead cycle in JMP (abs) and the extra cycle in BCD
operations.		 	 	

8. abs,X/Y write operations without a page-crossing actually read from the Fully Formed Address before writing to it. The read can be troublesome
when accessing I/O devices where reads are destructive. For 65C02 there's a software workaround, which is to ensure that the write to abs,X/Y
triggers a page-crossing, which means the address during the dead cycle will be a PBA, not the Fully Formed Address. The only software workaround
that works on both NMOS and CMOS 6502 is to avoid abs,X/Y address mode when writing to the read-sensitive device.	

9. External Operations are Reads unless otherwise noted by "(W)".	 	 	 	 	

10. PC refers to the address at PC, as follows:

▸ 1-Byte Opcodes Cycle 2 — Address of next opcode

▸ RTS Cycle 6 — Return address - 1 (as retrieved from the stack

▸ Branch (taken) Cycle 3 — Address of next opcode after Branch

▸ Branch (taken) w/ pg. crossing Cycle 4 — High-byte unchanged from prior cycle/Low-byte of target address (PCL + BOF13)

11. "Read, Write, Modify" Opcodes refers to INC, DEC, ASL, LSR, ROL and ROR.

12. On the 65C02, the "Modify" operation occurs in cycle 5 for ASL, LSR, ROL and ROR if a page is not crossed.

13. BOF refers to the Branch Offset value.

14. Dead cycles are 5 and 6* for 65C02 BBR and BBS (rather than cycles 3 and 4* for standard branches).

15. The behaviour shown for each CPU has been verified on the Visual 6502 (www.visual6502.org) and on a WDC 65C02 respectively. See also http://
archive.6502.org/books/mcs6500_family_hardware_manual.pdf Appendix A.	 	 	 	 	

C74-6502 Datasheet (DRAFT v0.0) �31

